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SUMMARY 

It is well known that at certain discrete frequencies the conventional boundary integral equation formu- 
lation of free surfacc fluid-structure interaction analyses breaks down. At such 'irregular' frequencies the 
BIE method fails to  provide either an acceptable or a unique solution. Having established the existence of 
irrcgular frequencies, a review of the different approaches adopted to remedy this problem is presented. 

A very simple modification of the BIE method is also presented to eliminate the irregular frequency 
problem. The proposed procedure, designated the combined boundary integral equation method (CBIEM), 
can be categorized as a modified integral domain method. A description of the CBIEM formulation is 
presented and its ability to provide a unique solution at  all frequencies is demonstrated. Predictions of 3D 
hydrodynamic reactive coefficients of addcd mass and fluid damping for a Series 60 hull form and an 
ellipsoid based on the CBIEM procedure are presented. These predictions are compared with results 
generated using conventional integral equation methods. The numerical studies demonstrate that the 
CBIEM is both a practical and effective method of suppressing irregular frequencies. In particular, the 
procedure is easy to implement in existing BIE computer codes with minimal additional computational 
effort. 
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1. INTRODUCTION 

The existence of irregular frequencies was first recognized by Lamb some 50 years ago in the field 
of acoustic radiation and scattering problems.' In the case of free surface water wave-body 
interaction problems, the occurrence of irregular frequencies was reported by John.', He showed 
that when the boundary value problem is reduced to an integral equation problem, with the 
wetted surface of the body representing the solution domain and the Green function acting as the 
kernel of the integral operator, the boundary integral equation does not admit a unique solution 
at some discrete frequencies. These frequencies correspond to a set of characteristic wavelengths 
for which the solution of the boundary value problem cannot be represented by a wave source 
integral formula. The breakdown generally occurs at wavelengths less than the characteristic 
linear dimension of the structure. In the case of ships, these wavelengths are often much smaller 
than the ship length. 

Hitherto, studies of the irregular frequency phenomenon have been concerned with the zero 
speed problem or the forward speed problem solved as a zero speed equivalent p r ~ b l e m . ~  Little is 
known about the existence and influence of the irregular frequencies in the forward speed integral 
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equation formulation. The theoretical investigation of the forward speed problem is considerably 
complicated because of the necessary inclusion of an additional line integral and the non- 
symmetric properties of the oscillating and translating wave source. 

In this paper we shall first review the existence of irregular frequencies in the 3D zero speed 
integral equation and then show how they are related to the interior Dirichlet problem. Various 
methods of modifying the integral equation to overcome the irregular frequency difficulty are 
then discussed. In particular we shall introduce a combined boundary integral equation method 
which is uniquely solvable for all frequencies. The equation is derived from supplementing the 
exterior Fredholm integral equation of the second kind with an integral equation of the first kind 
in the interior domain of the body. The modified method is then applied to provide numerical 
results for the hydrodynamic added mass and fluid damping coefficients of free floating struc- 
tures. These results are also presented with results generated using a standard source integral 
equation and the direct Green function integral methods. 

2. THE EXISTENCE O F  IRREGULAR FREQUENCIES 

For a free floating body in waves the hydrodynamic boundary value problem can be reduced to 
an integral equation with the solution domain corresponding to the wetted surface of the body. 
The integral equation is obtained either through direct application of Green’s theorem or the use 
of a source distribution. The source formulation is often referred to as the ‘indirect method’, since 
the velocity potential is determined after the source distribution strengths have been determined. 
It can be shown, as far as the study of irregular frequencies is concerned, that the two approaches 
have an identical set of characteristic frequencies at which both formulations fail. It is therefore 
necessary to establish whether the integral equation has a solution at the irregular frequency, and 
if a solution does exist whether or not it is unique. 

The integral equation representing the source strength distribution is given by 

where p and q are the ‘source’ and ‘field’ points respectively. On the hull wetted surface, the right- 
hand side of equation (1) can be equated to V,, the normal component of the fluid velocity. This 
integral equation is the governing equation of the so called external Neumann problem, with the 
normal derivative of the Green function acting as the kernel operator. The inhomogeneous 
equation is also known as a Fredholm integral equation of the second kind. Such equations are 
known to break down at  certain discrete frequencies. In order to demonstrate this we must resort 
to the Fredholm integral theorem. 

The Fredholm integral can be written in the general form 

with the associated homogeneous equation written as 

The adjoint homogeneous equation is defined by 
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where the superscript * denotes a complex conjugate. Then, according to the Fredholm integral 
theorem, if the homogeneous equation (2b) has a non-trivial solution, the integral equation (2a) 
will have a solution if and only if W(p) is orthogonal to every solution of the adjoint 
homogeneous equation, that is 

s g t ( P )  W(p)ds = 0. (3) 

Furthermore, even if equation (3) is satisfied, the solution to equation (2a) cannot be uniquely 
determined since any multiple of fo ( p )  may be added to the particular solution. The parameter p 
for which the homogeneous equation (2b) has a non-trivial solution is called a ‘characteristic 
value’ of the kernel K ( p ,  q),  otherwise p is said to have a ‘regular value’. 

The results of the Fredholm integral theorem are now applied to the source integral equa- 
tion (1). Clearly, comparing equations (1) and (2a), we note for our particular formulation that 

Consequently, the compatibility equation (3) becomes 

where O X  is the non-trivial solution of the corresponding adjoint homogeneous equation written 
as 

Since the Green function G ( p ,  q )  is a function of the wave number k , ,  then for each value of k, 
there is a set of characteristic values of (a/dn,)G(p, 4). The wave number k,, subject to p = 1 in 
its set of characteristic values, is called the ‘critical wave number’. For this wave number value the 
source integral equation given by equation (1) has either no solution or the solution is not unique. 

In the external Neumann problem the value of W(p) or (a/an,)#(p) is specified on the surface 
of the body boundary. Therefore for an arbitrary shaped body, except for some very special 
velocity distributions, it is unlikely that the compatibility equation (4) will be satisfied because of 
the arbitrary nature of W(p). Therefore for certain characteristic wave numbers the source 
formulation will have no solution and the boundary value problem cannot be represented by the 
source integral equation formulation (1). 

Next we demonstrate how the irregular frequencies or characteristic values of the exterior 
Neumann problem are related to the eigensolutions of the interior Dirichlet problem. The interior 
Dirichlet problem is fictitious in that its solution has no physical relationship with the velocity 
potential distribution of the exterior Neumann problem. Consider a point @ located in the interior 
domain of the body whose inner velocity potential is denoted by 6. By definition 6 satisfies 
Laplace’s equation and the same free surface condition as the exterior potential. Using Green’s 
second identity and letting the field point fi  approach the wetted surface boundary So from the 
inside, so that fi  tends to p ,  the integral equation describing the interior problem can be written as 

The classification of this integral equation depends upon the boundary conditions specified on So. 
Thus equation (6)  becomes an integral equation of the first kind if the velocity potential is 
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specified on the boundary, and equation (6) is an integral equation of the second kind if the fluid 
normal velocity is specified on So. To obtain an integral equation of the second kind with the 
velocity potential specified on the boundary surface, i.e. a Dirichlet problem, we differentiate 
equation (6) with respect to the normal vector at the point p on So, that is 

The right-hand side of equation (7) is known in the Dirichlet problem, since 6 is prescribed on S o .  
Comparing the kernel of equation (7) with that of equation (l), representing the exterior 
Neumann problem, it is clear that the kernels are identical. This means that whenever the 
homogeneous equation corresponding to equation (7) has a non-trivial solution, the exterior 
homogeneous Neumann problem associated with equation (1) also has a non-trivial solution. 
Thus equation (1) has a solution if and only if the compatibility equation (4) is satisfied, In other 
words, the eigensolution of the interior Dirichlet problem corresponds to the irregular frequencies 
of the exterior Neumann problem. 

An alternative formulation of the exterior problem is provided by directly appealing to Green’s 
second identity. In this case the integral equation to be solved is given by 

and the corresponding adjoint homogeneous equation is 

a 
8% 

2 W ( P )  + j j d 4 ) -  G*(%P)dS = 0. 

Thus the compatibility equation (3) now assumes the form 

(9) 

where 9*(4) is the complex conjugate solution of the adjoint homogeneous equation (9). One 
should note that whereas the normal derivative in equation (8) is now taken with respect to the 
dummy or field point variable q, the normal derivative of equation (1) is taken with respect to the 
free or source point variable p .  

To prove that the compatibility equation (10) can indeed be satisfied in the exterior Neumann 
problem, we return to the interior Dirichlet problem given by equation (6). For the case of the 
homogeneous Dirichlet problem, equation (6) reduces to 

If we now take the complex conjugate of the adjoint homogeneous equation (9) and compare it 
with the homogeneous form of the interior Dirichlet problem given by equation (7), the identity 

can be established. Changing the order of integration in equation (10) and making use of the 
identity expressed in equation (12) yields 
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The inner integral of equation (13) is equal to equation (11) and thus the integrand of equa- 
tion (13) vanishes identically. That is, the compatibility equation (10) is satisfied for all conjugate 
solutions g*(4) of the adjoint homogeneous equation (9). This result is sufficient to guarantee a 
solution to the integral equation (8), though the solution is not unique at the critical wave 
numbers. On the other hand the integral equation formulation based on the source distribution 
has no solution at the eigenfrequencies since the compatibility equation (4) is unlikely to be 
satisfied for an arbitrary shaped body. 

3. METHODS OF REMOVING THE IRREGULAR FREQUENCIES 

Although the source integral equation ( 1 )  and the direct Green function integral equation (8) are 
not solvable at certain discrete sets of wave frequencies, the effect of irregular frequencies upon the 
prediction of the hydrodynamic coefficients is quite detrimental. This is because the effect of each 
irregular frequency can often spread over quite a wide frequency band centred on their exact 
location. In particular, the integral equation becomes ill-conditioned in the vicinity of these 
frequencies. The error due to the ill-conditioning can be further aggravated by small pertur- 
bations in the formulation due to either numerical inaccuracy arising in the evahation of the 
Green function or to poor modelling of the body wetted surface. Numerical results presented by 
Breit’ have shown that the frequency band of the irregular frequencies can generally be reduced if 
the surface representation is improved by refining the hull mesh or by using higher-order 
representations. There exist many methods of modifying the integral equation to ensure a unique 
solution at all frequencies. The choice of methods has to be considered in terms of their 
effectiveness, the computational penalties and the ease of implementation. Broadly speaking, the 
modifications that have been suggested hitherto can be grouped into two categories: 

(a) modification of the integral operator 
(b) modification of the domain of the integral operator. 

In the second category the domain of the integral operator is enlarged, whereas in the first 
category the integral operator is modified on the same domain. The second category is sometimes 
also referred to as the ‘extended boundary condition’ method. 

3.1. Modifying the integral operator 

The procedure for modifying the integral operator was first suggested by Ursell.6 The method 
involves adding a series of multipole solutions of the governing equation to the associated Green 
function. In the field of acoustics, Ursel17 and Jones’ showed that a suitably modified Green 
function kernel of the integral equation always produced a unique solution for all frequencies. 
The number of multipoles added determined the range of wave frequencies which were free of 
irregular frequencies. The choice of the constants associated with the multipoles has been studied 
by Kleinman and Roach’ who provide some criteria regarding the optimal selection of these 
constants. The multipole method in the water wave problem has the advantage of low com- 
putation time, but unfortunately it is not always convenient for bodies with complicated shapes 
and does not generalize to full 3D analyses. 

In water wave problems Sayer and Ursell” illustrated that the irregular frequencies can be 
removed by augmenting the Green function with an additional wave singularity inside the body. 
The modified Green function G’ is written as 

G ’ h  4 )  = W, 4 )  + AG(P,  O)G(q ,  01, (14) 

where G(p, 4 )  is the original Green function and A is a constant. The additional wave singularity, 
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C ( p , O )  and G(q,O),  is placed at the origin and its influence is evaluated at points p and q 
respectively. Similar approaches have been adopted by Ogilvie and Shin,” Adachi and 
Ohmatsu,” Sayer13 and Wu and Price14 in the study of two-dimensional wave radiation and 
diffraction problems. 

Martin and Ursell” provided an alternative method of solving the boundary value problem 
called the null-field equation approach. The fundamental difference between the null-field method 
and the usual integral equation methods is that the null-field governing equations do not 
represent an integral equation of the second kind. In fact the method provides an infinite set of 
moment-like equations, called null-field equations. Martin and Ursell were able to show that 
these equations are uniquely solvable for all frequencies. 

Another alternative method, proposed by Burton and MillerI6 for the acoustic scattering 
problem, is to exploit the different locations of the eigenfrequencies in the first and second kind 
integral equations. In particular they show that a linear combination of two such equations for 
the exterior Neumann problem will always provide a unique solution at all frequencies. This 
equation can be written as 

where CI is a purely imaginary constant of the form a = ia, with a a real number. Recently, 
Sclavounos and Lee17 adopted this method in the solution of the 2D free surface radiation and 
diffraction problems. They suggested that optimum performance of the method was associated 
with a value of il in the range 0.24.3.  

The major drawback of the Burton and Miller procedure is the evaluation of the double 
normal derivative of the Green function at  all points on the body surface. This is likely to incur a 
substantial amount of extra computing effort and core memory storage. 

3.2. Modifving the domain of the integral operator 

A well known method of modifying the domain of the integral equation to eliminate the 
irregular frequencies is the so called ‘capping’ procedure. The method is based on the idea that the 
irregular frequencies are associated with a resonant wave phenomenon in the corresponding 
interior problem. For a harmonic oscillating body one can imagine a kind of fluid sloshing inside 
the body, and thus the placing of a lid or cap on the interior free surface might suppress resonant 
responses. The cap is formed by extending the source or the dipole distribution onto the interior 
free surface and imposing a rigid wall condition on it. OhmatsuI8 proved that such a procedure is 
indeed mathematically justifiable and confirmed its viability numerically. Recently, Donati19 
carried out extensive numerical studies on the performance of the capping procedure. The effects 
of different section shapes and the number of facets used to represent the cap when determining 
the 2D hydrodynamic coefficients were investigated. Donati concluded that, in general, two facets 
would suffice to overcome the effects of the first and second irregular frequencies. At higher 
frequencies a minimum of eight to twelve facets was required, with the actual number depending 
upon the section shape and the particular hydrodynamic coefficients being considered. In 
particular, Donati found that using too many facets on the cap could have detrimental effects on 
the values of the hydrodynamic coefficients clear of the irregular frequencies. This unexpected 
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drawback places some uncertainty on the general reliability of the capping procedure for 
practical use. In three-dimensional problems capping also has the disadvantage of incurring large 
additional computation costs due to the 3D discretization of the interior free surface. 

3.3. The combined boundary integral equation method (CBIEM) 

The proposed combined boundary integral equation method, abbreviated to CBIEM, involves 
a modification of the domain of the integral operator. The basic method was first suggested by 
Schenck” in the field of acoustics. The method can also be said to follow the ideas of Burton and 
Miller,16 namely exploiting the different locations of the eigenfrequencies in the first and second 
kind integral equations. 

In fact the main difference in the CBIEM is that the supplementary integral equation of the first 
kind is obtained through extending the field point of the integral equation into the interior 
domain of the body rather than by taking its normal derivative on the body surface. On its own 
the interior first kind integral equation has some undesirable computational characteristics, the 
principal objection being that all the influence matrix coefficients become smaller as the body 
surface division is refined. This is in direct contrast to the second kind integral equation for which 
the diagonal terms of the influence matrix tend to a constant and only the off-diagonal terms 
decrease. However, the observed shortcomings can be overcome by combining the interior first 
kind problem with the exterior second kind equation based on the body wetted surface. Since 
these equations are not inconsistent, they form an overdetermined system whose solution will be 
unique. The uniqueness of the solution of the CBIEM will be proved by considering the interior 
Dirichlet problem. 

3.4. Formulation and uniqueness of the CBIEM 

written as 
From Green’s theorem, the velocity potential 4 of the exterior Neumann problem can be 

44(P), P in D, ( W  
( 16b) 

a a 
8% 

Jy#(4 )a ,  G(P,  4)ds - - 4(4 )G(P ,  q)ds = 2 Z N P ) ,  Po on so7 I 0, p in 5, ( 16c) 

where D and 6 are the exterior and interior domains of the body respectively. The body wetted 
surface So is assumed to be smooth. The second kind integral equation (16b) represents a dipole 
distribution of strength 4 and a source distribution of strength a4/anq on the surface S o .  For a 
point p lying in the interior domain 6 of the body, equation (16c) provides an integral equation of 
the first kind. By itself the integral equation of the first kind is not uniquely solvable at the 
eigenfrequencies, but then these frequencies do occur at different locations to those of the second 
kind integral equation. This property suggests that if equations (16b) and (16c) are combined and 
solved together, then the solution will always be unique. This indeed turns out to be the case since 
only one of the many solutions at the eigenfrequencies of the exterior Neumann problem satisfies 
equation (16c). 

be the solution of equation (16b) that also satisfies equation (16c) at the irregular 
frequencies; then 

Let 

(1 7) 
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where fl  is a point in 6. Also let 4o be the non-trivial solution of the corresponding homogeneous 
equation; then 

Then any other solutions that satisfy equation (17) can be written as 

4 2  = 41 + ' 4409  (20) 
where A is a constant. If we assume that the solutions given by equation (20) also satisfy 
equation (18), it follows that 

ss (21) [jib + ,440)- G(B, q)ds = 
a 

G(h, q)V,(q)ds. 
8% 

However, c$l satisfies equation (18) and hence equation (21) reduces to 

Consequently equation (22) suggests that either A = 0 or the integral itself is equal to zero. If 
A = 0 then we have b2 = b1, which implies that the integral equation (18) only admits one 
solution at the eigenfrequencies of equation (17). This can be proved mathematically by again 
resorting to the interior formulation of the velocity potential. 

Let us denote the interior potential by $ ( p ) .  This potential can also be represented by a 
distribution of dipoles of strength y over the boundary surface S o ,  such that 

When the interior point 6 approaches the boundary surface So ,  then 

Comparing the kernel of equation (24) with that of equation (17) reveals that they are identical. 
This implies that if the homogeneous equation associated with equation (24) has a non-trivial 
solution, then the homogeneous equation corresponding to equation (17) will also have a non- 
trivial solution. Therefore at the eigenfrequencies, the eigensolution of the interior Dirichlet 
problem will be given by the right-hand side of equation (23). This therefore suggests that 

and thus implies that A = 0 in equation (22). This completes the proof of the uniqueness of the 
combined boundary integral equations. 
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4. IMPLEMENTATION OF THE CBIEM 

The two integral equations of the first and second kind to be solved in the CBIEM are 

where V,  is the normal fluid velocity component on the hull surface. 
The combined integral equation (25) and (26) can be solved numerically by the usual method of 

surface discretization. The resultant non-square overdetermined ( N  + N ‘ )  by N matrix can be 
transformed to an N by N system by the least-squares orthonormalizing procedure.” The 
transformed matrix coefficients D i j  are given by 

N + N’ 

k = l  
Dij = d k i d k j ,  i , j  = 1 to N ,  

where N is the total number of nodes on the body surface and N ’  is the number of interior points 
used in association with equation (26). The coefficients dki and dkj  are the elements of the non- 
square matrix. 

The main advantage of the CBIEM is its simplicity and ease of implementation. An existing 
computer program based on the direct Green integral can be easily modified to allow for the 
extension of field points into the interior domain of the body. If the boundary value problem has 
been formulated as a source strength distribution problem, then one more additional change will 
be necessary, namely the position at which the normal derivative of the Green function is 
evaluated. In the source strength method the derivatives are evaluated at the field points, whereas 
in the direct method they are evaluated at the source points. 

The position of the interior points @ are arbitrary so long as they do not coincide with the nodal 
points of the interior eigensolution. For an arbitrary shaped body the nodal points of the interior 
eigensolution are not known a priori, and moreover they increase in number as the wave 
frequency increases and also become more closely packed together. Consequently the number of 
interior points required in the application of the CBIEM has to be increased to avoid these nodal 
points and this can lead to greater computational costs. This therefore places a limit on the 
effectiveness of the CBIEM for frequencies beyond some threshold for which the performance will 
be impaired. In order to alleviate this deficiency, OhmatsuZ2 suggested adding an extra equation 
obtained by taking the x-derivative of equation (26) into the overdetermined system. The reason 
for doing this is that the x-derivatives of the interior potential cannot be zero, even at the nodal 
points. We have not implemented this in our 3D program because we are primarily interested in 
the frequency range within the first few irregular frequencies and therefore just adding extra 
interior points is considered to be more cost effective. The advantage provided by incorporating 
the x-derivative of the interior potential has to be balanced against the extra computational effort 
required in evaluating the second-order derivatives of the Green function in equation (26). 

For a body with geometric symmetry, the boundary value problems have solutions which are 
symmetric and antisymmetric. In the case of a ship, the symmetric hydrodynamic quantities are 
associated with the surge, heave and pitch motions and the antisymmetric quantities relate to the 
sway, roll and yaw motions. Therefore the influence matrix coefficients from the discretized 
interior integral equation (26) are processed to form the sum and the difference of the port and the 
starboard side contributions, and these are used to determine the symmetric and the antisym- 
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metric modes respectively. If the interior point 8 is located on the symmetric centreplane of the 
ship, the matrix coefficients of the antisymmetric mode will have no contribution from the 
supplementary interior integral equation. For this reason the interior points should be placed off 
the centreplane. 

4.1. Numerical results and discussions 

Numerical predictions of the added mass and the fluid damping coefficients based on three 
different integral formulations are presented for comparison. The three boundary integral 
equation methods used are the source distribution method, equation (I), the direct boundary 
integral equation method, equation (8), and the CBIEM, equations (25) and (26). The structures 
used in the applications are a Series 60 ship, with a block coefficient 0.7, and a half submerged 
ellipsoid. The Series 60 model and the ellipsoid are discretized into 216 and 220 facets respect- 
ively; see Figures 1 and 2. The principal dimensions of both models are given in the Appendix. 

3D HI11 L W€TTFn SUR F.ACF D I S C  RFT ! S A D  
SFRIES-60 CB=0.7 MODEL, NO OF FACETS = 216 

Figure 1. 3D discretized hull surface of a Series 60 model; 216 facets; Cb=0.7 

3r3UJ,WFT,TF! l  SU RFJCF OTSCRE T I  SAT1 ON 
AN ELLIPSO!C) (L/B=S,S/T=21 NO. OC FACETS = 220 

Figure 2. 3D discretized hull surface of an ellipsoid; 220 facets; L/B = 8, B/T = 2 
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10 

Figures 3-1 0 provide the hydrodynamic coefficients of the Series 60 model. These coefficients 
are computed on the basis of the forward speed Green function of L a d 3  applied for a vanishingly 
low Froude number of F = 0.001. The first irregular frequency occurs when the non-dimensional 
frequency f(o,JL/g) approaches 5.15 for which both the source and the direct methods fail. The 
errors in the predicted hydrodynamic coefficients are substantial within the vicinity of the 
irregular frequency and their effect spreads over quite a wide frequency band owing to the ill- 
conditioning of the influence coefficient matrices. The ‘spread’ of the influence of the irregular 
frequency is more severe on the fluid damping coefficients than on the predicted added masses. In 
the case of the cross-coupling hydrodynamic coefficients the effect of the irregular frequency is 
sufficient to destroy the required Timman-NewmanZ4 symmetry relationships. However, the 
computed results based on the CBIEM with 10 interior points do not exhibit any irregular 
frequency effects. The use of the CBIEM also restores the expected symmetric relationship in the 
cross-coupling hydrodynamic coefficients at and near the first irregular frequency. 

As commented on earlier, Donati” reported that the use of too many interior facets in the 
capping procedure can have a detrimental effect upon the predicted results. In order to investigate 
whether the number of interior points used in the CBIEM can have a similar adverse effect upon 

A SO SOURCE DlSlRlBUTlONS 
m 30 DIRECT 80UNDAQT IllTEGRAL 
o 30 COW8lNED BOUNDARY INTEGRALS 

I 10 INTERIOR P O I N I S  j 

I00 - 

00 - 

60 . HEAVE DAMPING I F * O . O O l l  

t o  

-20 - 

w I L / g  

Figure 3. Heave added mass and damping coefficients 
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Figure 10. Surge-induced pitch added mass and damping coefficients 

the hydrodynamic coefficients, the calculations were repeated for a varying number of interior 
points. Figures 11 and 12 display the results at the wave frequency f =  5.25 with N', the number 
of interior points, ranging from 0 to 20, where N' = 0 corresponds to the direct boundary integral 
method. These figures show that at the selected frequency a minimum of 10 interior points are 
needed to ensure consistent results for the different hydrodynamic coefficients considered. Some 
hydrodynamic coefficients, such as the pure surge, the pure pitch and the heave-pitch added 
masses, require as few as 4 interior points to eliminate the first irregular frequency. When N' is 
less than 4 the CBIEM predicted results are actually worse than either the source or direct 
methods which correspond to N' = 0. 

The additional computational effort required, in terms of CPU time for the CBIEM in 
comparison with the direct method is approximately given by "IN,  where N is the total number 
of surface facets used to represent the wetted surface of the structure. If the model has one plane of 
symmetry, this figure is to be doubled. For the Series 60 model, with N equal to 216 and the 
maximum N' value equal to 20, it is immediately apparent that the additional computational cost 
incurred by the CBIEM over that of the direct method is not excessive. Table I provides the 
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A SURGE AWEO ! M S  1-20.0) 
o MEAVE AOOED MASS 
0 PITCH AWED HOHENT 
w HEAVE-PITCH AWEO HAS5 l.10.01 

ENCWNTERING FREOUENCY i 5.25 , ,  
0 %  

2a t I ,  

Figure 11 .  Influence of number of interior points upon hydrodynamic added mass coefficients 

A SURGE OARPlffi 1.2.01 
0 MAVE OAMPIffi 
m PITCH DARPIM; 
w HEAVE-PITCH OAWING I+Z.r)l 

E.XWPITERING FREWEHCY = 5.25 \ 

Ho. OF INTERICQ DrilNlS N 
0 

5 10 I S  

Figure 12. Influence of number of interior points upon hydrodynamic damping coefficients 

relative CPU times incurred in the application of the three different integral equation formu- 
lations for a wave frequency of 5-25. The values presented have been normalized with respect to 
the CPU time of the direct method. Table I suggests that the CPU time of the CBIEM increases 
almost linearly with the number of interior points N'.  When N' = 20 the CBIEM incurs a 16% 
penalty in CPU time over that of the direct method. It should be noted that these figures are only 
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approximate since CPU time can vary by up to 5% depending upon the work load for the central 
processor in a time-sharing computer. 

We have shown the effectiveness of the CBIEM at the first irregular frequency for the Series 60 
model. To assess the performance of the methods in the higher-frequency range we extend the 
calculation up to and inclusive of the first eight irregular frequencies for a half submerged 
ellipsoid. The results are again compared with predictions based on the direct method of 
calculation. Figures 13 to 16 present the computed added mass and fluid damping coefficients 
using the two procedures. In the symmetrical mode of surge the CBIEM with 5 interior points can 
successfully eliminate the adverse effects of the first four irregular frequencies. The method breaks 
down at the fifth irregular frequency which occurs at  a wave frequency of approximately 6.95. 
Increasing the number of interior points to 10 removes the difficulty. However, the surge added 
mass and damping coefficients exhibit some irregular patterns with the higher number of interior 
points. Nevertheless they show much improvement over that of the direct method. 

For the antisymmetric sway mode the first irregular frequency occurs at  a much higher 
frequency than that of the symmetric modes. In this case 5 interior points are not sufficient to 
eliminate its inff uence, whereas the use of 10 interior points improves the results substantially. 

b 5  5.1 5.5 6.9 b.5 7 . 1  a ?.s 
V A V E  E ,KWNEQ"C FilEOUEYCY o.JCls - 

Table I. The normalized CPU time 

N ' = O  4 8 12 16 20 

- Source method 0.98 - - - - 

Direct method 1-00 - - 

CBIEM 1.00 1.02 1-05 1.08 1.13 1.16 
- - - 

q t  
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Figure 15. Sway added mass coefficient of an ellipsoid 

5. FINAL COMMENTS AND CONCLUSIONS 

The results presented are limited to the case of zero forward speed for which we have already 
proved the existence of the irregular frequencies associated with the integral equation. In the case 
of the forward speed problem little is known about the uniqueness of the integral equation. 
However, one can be sure that if irregular frequencies do exist in the forward speed problem, then 
their location will be quite different to those of the zero speed problem, simply because their 
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Figure 16. Sway damping coefficient of an ellipsoid 

kernels are so different. Similarly, the location of the irregular frequencies in the forward speed 
problem formulated by the source integral and the direct Green function integral will also differ 
because the two integral equations are not adjoints, unlike the corresponding zero speed problem. 

To summarize, we have demonstrated mathematically the existence of irregular frequencies in 
the integral equation associated with the water wave radiation and diffraction problem. These 
frequencies are connected to the eigensolution of the interior Dirichlet problem. The numerical 
difficulties related to the irregular frequencies can be eliminated by modifying either the domain 
of the integral operator or the integral operator on the same domain. The proposed combined 
boundary integral equation method (CBIEM) is effective in removing the first few irregular 
frequencies. The method does not require an excessive amount of extra computational effort and 
can easily be implemented in existing computer programs. However, at high frequencies the 
proposed procedure becomes less satisfactory as more interior points are needed. The com- 
putational penalty increases almost linearly with the number of interior points. 
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APPENDIX: PRINCIPAL DIMENSIONS OF HULL MODELS 

Series-60 parent forms 

Model number 4212W 
Block coefficient, C, 0.7 
Length L (m) 3.048 
Beam B (m) 0.435 
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Draught T (m) 0.174 
Waterplane area A,  (m2) 1.046 
Volume of displacement (m3) 0162 
Radius of gyration (m) 0.25L 
Longitudinal centre of buoyancy (m) F 0.015 

Body lines are given by Todd.25 

Ellipsoid 

Y = B [ (  1 - X2/L2)( 1 - ZZ/L2)]”2 

Length/beam ratio = 8 
Beam/draught ratio = 2 

REFERENCES 

1. H. Lamb, Hydrodynamics, Cambridge University Press, 1932. 
2. F. John, ‘On the motion of floating bodies I’, Commun. Pure Appl. Math., 2, 13-57 (1949). 
3. F. John, ‘On the motion of floating bodies 11, Simple harmonic motion’, Commun. Pure Appl. Math., 3,45-101 (1950). 
4. N. Salvesen, E. 0. Tuck and 0. W. Faltinsen, ‘Ship motions and sea loads’, SOC. Naval Archit. Marine Eng. Trans., 78, 

5. S. R. Breit, ‘A higher order panel method for surface wave radiation and diffraction by spheroid’, Proc. 41h Int. Con$ 

6. F. J. Ursell, ‘Short surface waves due to an oscillating immersed body’, Phil. Trans. R. SOC. London. Series A, 372, 

7. F. J. Ursell, ‘On the exterior problems of acoustic’, Proc. Camb. Phil. SOC., 74, 117-125 (1973). 
8. D. S. Jones, ‘Integral equation for the exterior acoustic problem’, Q. J .  Mech. Appl. Math., 27, 129-142 (1974). 
9. R. E. Kleinman and G. F. Roach, ‘Boundary integral equation for the 3D Helmholtz equation’, SIAM Rev., 16, 

214236 (1974). 
10. P. Sayer and F. Ursell, ‘Integral equation methods for calculating the virtual mass in water of finite depth’, Proc. 2nd 

Int. Con$ on Numerical Ship Hydrodynamics, Berkeley, CA, 19-21 September 1977, pp; 176184. 
11. T. F. Ogilvie and Y. S. Shin, ‘Integral-equation solutions for the time-dependent free-surface problems’, Naval Archit. 

Marine Eng., 16, 8696  (1978); from J .  Soc. Naval Archit. Japan, 143 (June 1978). 
12. A. Adachi and S. Ohmatsu, ‘On the influence of irregular frequencies in the integral equation solution of the time- 

dependent free surface problems’, Naval Archit. Ocean Eng., 18, 36-45 (1980). 
13. P. Sayer, ‘An integral method for determining the fluid motion due to cylinder heaving on water of finite depth’, Phil. 

Trans. R. SOC. London, Series A,  372, 83-110 (1980). 
14. J. X. Wu and W. G. Price, ‘Appearance and disappearance of irregular frequencies in wave structure interaction 

problems’, First Znt. Workshop on Water Waves and Floating Bodies, MIT, 1986. 
15. P. A. Martin and F. Ursell, ‘On the null-field equation for water-wave radiation problems’, Third Int. Conf: on 

Numerical Ship Hydrodynamics, Paris, 1980, pp. 543-550. 
16. A. Burton and G. F. Miller, ‘The application of integral equation methods to the numerical solution of some exterior 

boundary value problems’, Phil. Trans. R.  SOC. London, Series A ,  323, 201-210 (1963). 
17. P. D. Sclavounos and C. H. Lee, ‘Topic on boundary element solution of wave radiation and diffraction problems’, 

Proc. 4th Int. Con$ on Numerical Ship Hydrodynamics, Washington DC, 1985. 
18. M. Ohmatsu, ‘On the irregular frequencies in the theory of oscillating bodies in a free surface’, Papers Ship Res. Inst. 

Japan, No. 48 (1975). 
19. E. Donati, ‘A study of the theoretical and implementation aspects of response prediction methods for rigid floating 

bodies at sea’, Ph.D Thesis, University of Newcastle upon Tyne, Department of Naval Architecture and Shipbuilding, 
1986. 

20. H. A. Schenck, ‘Improved integral formulation for acoustics radiation problems’, J.  Acoust. Sot. Amer., 44, 41-58 
(1968). 

21. P. J. Davis, Orthonormalising Codes in Numerical Analyis, Survey of Numerical Analysis, McGraw-Hill, 1962. 
22. M. Ohmatsu, ‘A new simple method to eliminate the irregular frequencies in the theory of water wave radiation 

problem’, Papers Ship Res. Inst.  Japan, No. 70 (1983). 
23. S. M. Lau, ‘3D hydrodynamic analysis of first and second order forces on free floating structures with forward speed, 

Ph.D. Thesis, University of Newcastle upon Tyne, Department of Naval Architecture and Shipbuilding, 1987. 
24. R. Timman and J. N. Newman, ‘The coupled damping coefficients of a symmetric ship’, J. Ship Res., 6,1-7 (June 1962). 
25. F. H. Todd, ‘Some further experiments on single-screw merchant ship forms, Series W, SOC. Naval Archit. Marine Eng. 

250-287 (1970). 

on Numerical Ship Hydrodynamics, Washington DC, 1985. 

93-110 (1980). 

Trans., 61, 516589 (1953). 


